

November 11, 2013

Midcontinent ISO Affected System Impact Study

Prepared for: Midcontinent ISO

Prepared by: Quanta Technology, LLC

Contacts: Ed Pfeiffer

epfeiffer@quanta-technology.com

919 334 3054

Xiaohuan Tan

xtan@quanta-technology.com

919 334 3073

Table of Contents

1	EXE	ECUTIVE SUMMARY	4
2	STU	DY METHODOLOGY & ASSUMPTIONS	5
	2.1	Study Criteria	5
	2.2	BASE CASE DEVELOPMENT	5
	2.3	STUDY METHODOLOGY	7
	2.4	STUDY ASSUMPTIONS	8
3	POV	VER FLOW ANALYSIS RESULTS	9
	3.1	THERMAL RESULTS BY DC ANALYSIS	9
	3.1.1	2016 Results	9
	3.1.2	2 2023 Results	9
	3.2	THERMAL RESULTS BY AC ANALYSIS	9
4	CON	NCLUSIONS	9
A	PPEND	IX A STEADY STATE ANALYSIS INPUT FILES	.10
	A.1	SUBSYSTEM FILE	
	A.2	MONITORED ELEMENT FILE.	
	A.3	CONTINGENCY FILES	.21

List of Tables

TABLE 2-1 PLANNING CRITERIA REQUIREMENTS	5
TABLE 2-2 PJM GENERATION INTERCONNECTION PROJECTS STUDIED	
TABLE 2-3 STUDY REGION	7

1 Executive Summary

This report documents the system thermal impacts of thirty-four (34) projects in the PJM generator interconnection queue on the Midcontinent Independent System Operator ("MISO") transmission system, with a proposed combined maximum output of 7,477.2 MW.

The linear transfer analysis (DC analysis) did not identify any steady state thermal violations with the interconnection of the thirty-four PJM projects on the monitored MISO transmission system based on a standard FCITC calculation using a 3% TDF cutoff.

2 Study Methodology & Assumptions

2.1 Study Criteria

All interconnection requirements are based on the applicable MISO Transmission Planning Criteria and NERC Reliability Standards. The criteria used in this study are shown in Table 2-1.

Table 2-1 Planning Criteria Requirements

Tuble 2 11 tulling Criteria Requirements			
System Event	Steady State Thermal		
Category A Intact System	All transmission facilities <100% of Normal Seasonal Rating (Rate A)		
Category B Single Contingency	All transmission facilities <100% of Emergency Seasonal Rating (Rate B)		
Category B Single Contingency	At 100% of the combined capacity of the all queue entries, no overloads for which MW impact of the queue injection exceeds 20% of the Emergency Seasonal Rating (Rate B)		
Category C / D Selected Multiple Contingencies & Extreme Events	Violations of Category B Criteria will be noted.		

2.2 Base Case Development

All steady state analysis performed in this study was based on the following 2016 and 2023 summer peak ("SPK") and shoulder peak ("SH") base cases provided by MISO:

- BaseCase-DPP-Feb13_2016SH_050813_v33.sav
- BaseCase-DPP-Feb13_2016spk_050813_v33.sav
- BaseCase-DPP-Feb13_2023SH_050813_v33.sav
- BaseCase-DPP-Feb13_2023SPK_050813_v33.sav

The detail of each PJM interconnection request is listed in Table 2-2. Wind-based generation was dispatched at 20% of requested maximum MW output in the SPK condition and 100% of nameplate in the SH condition. Generations of other fuel types were modeled at 100% of their nameplate capacity. All PJM interconnection requests were dispatched to the PJM system.

Table 2-2 PJM Generation Interconnection Projects Studied

PJM Queue Entry	PJM Substation	State	Max-Output (MW)	Fuel Type
S73	Lincoln – North Delphos 138kV	IN	200.0	wind
T130	Convoy – East Lima 345kV	ОН	300.0	wind
T131	Lincoln – Sterling 138kV	ОН	150.0	wind
T142	Southwest Lima – Marysville 345kV	ОН	300.0	wind
T143	Hennepin 138kV	IL	250.0	wind
T148	Caledonia Wind II 100 MW	IL	100.0	wind
T94	Cook – Palesades 345kV	MI	1035.0	natural gas
T99	Caledonia Wind 100 MW	IL	100.0	wind
U1-049	Kankakee #4 138kV	IL	100.0	wind
U2-028A_AT1	Ironville 138kV	ОН	135.0	other
U2-072	East Lima – Marysville 345kV	ОН	300.0	wind
U3-021	Silver Lake – Cherry Valley 345kV	IL	100.0	natural gas
U4-027	Normandy-Kewanee 138kV	IL	100.0	natural gas
V1-011	Haviland 138kV	ОН	100.0	wind
V1-012	Haviland 138kV	ОН	150.0	wind
V2-006	East Leipsic 138kV	ОН	150.0	wind
V2-042A_AT2	Galion 138kV	ОН	200.0	wind
V3-007	Desoto-Tanners Creek #1 345kV	IN	200.0	wind
V3-008	Desoto-Tanners Creek #1 345kV	IN	200.0	wind
V3-009	Desoto-Tanners Creek #1 345kV	IN	200.0	wind
V3-053	Desoto 138kV	IN	150.0	wind
V4-010	Tiffin Center 138kV	ОН	200.0	wind
V4-015	Fostoria Central 138kV	ОН	66.6	wind
V4-016	Valley 138kV	MI	200.0	wind
W1-070A_AT4	Ashtabula 138kV	ОН	50.0	wind
W1-072A_AT5	Lemoyne 345kV	ОН	40.0	natural gas
W2-001	Fostoria Central 138kV	ОН	66.6	wind
W3-059A_At6	Avery – Greenfield 138kV	ОН	99.0	wind
W3-088	South West Lima 345kV	ОН	200.0	wind
W3-128	Sporn – Waterford 345kV	ОН	652.0	natural gas
W3-170	Buckskin 69kV	ОН	12.0	solar
X1-027A_AT12	Davis Besse – Beaver 345kV	ОН	500.0	wind
Y1-006	Jubal Early – Austinville 138kV	VA	72.0	wind
Y1-069	Bay Shore – Fostoria Central 345kV	ОН	799.0	natural gas
	Total		7,477.2	

2.3 Study Methodology

The steady state analysis was performed to identify the thermal violations on the MISO system caused by the PJM interconnection projects. Linear transfer analysis was performed using the Linear Transfer Analysis modules of the version 11.0.1 of the Managing and Utilizing System Transmission (MUST, Version 11.0.1) program from Siemens Power Technologies, Inc (PTI). AC power flow solutions to verify constraints identified in the linear analysis were performed using the Power Flow module of the Power System Simulation/Engineering-33 (PSS/E, Version 33) program from PTI. These programs are accepted industry-wide for power flow analysis.

The study region defined in the monitoring file that MISO provided includes:

Table 2-3 Study Region

Area #	Area ID	Area Name	Subsystem	
208	DEI	Duke Energy Indiana		
210	SIGE	Southern Indiana Gas & Electric Company		
216	IPL	Indianapolis Power & Light Company		
217	NIPS	Northern Indiana Public Service Company		
333	CWLD	Columbia, MO Water and Light	STUDY_CENTRAL	
356	AMMO	Ameren Missouri		
357	AMIL	Ameren Illinois		
360	CWLP	City of Springfield (IL) Water Light & Power		
361	SIPC	Southern Illinois Power Cooperative		
222	CE	Commonwealth Edison		
330	AECI	Associated Electric Cooperative Inc.		
540	GMO	Greater Missouri Operations Company		
541	KCPL	Kansas City Power and Light Company	CTUDY CEAMC	
542	KACY	Board of Public Utilities		
545	INDN	City of Independence	STUDY_SEAMS	
640	NPPD	Nebraska Public Power District		
645	OPPD	Omaha Public Power District		
650	LES	Lincoln Electric System, NE		
652	WAPA	Western Area Power Administration		
295	WEC	Wisconsin Electric Power Company (ATC)		
600	XEL	Xcel Energy North		
608	MP	Minnesota Power & Light		
613	SMMPA	Southern Minnesota Municipal Power Association	STUDY_WEST	
615	GRE	Great River Energy	STODY_WEST	
620	OTP	Otter Tail Power Company		
627	ALTW	Alliant Energy West		
633	MPW	Muscatine Power & Water		

Area #	Area ID	Area Name	Subsystem
635	MEC	MidAmerican Energy	
661	MDU	Montana-Dakota Utilities Co.	
667	MHEB	Manitoba Hydro	
680	DPC	Dairyland Power Cooperative	
694	ALTE	Alliant Energy East (ATC)	
696	WPC	Wisconsin Public Service Corporation (ATC)	
697	MGE	Madison Gas and Electric Company (ATC)	
698	UPPC	Upper Peninsula Power Company (ATC)	

All facilities in the study region with a voltage of 69kV and above were monitored. The MISO provided contingencies include single branch, single unit, and selected multi-element contingencies on facilities in the study region and part of the surrounding control areas.

Thermal overloads were identified using linear transfer with DC power flow solutions to evaluate the intact system, N-1 contingency and certain multiple contingency conditions. Transmission reserve margin ("TRM") is not used (i.e., 0% TRM) in the analysis.

The MISO Business Practices Manual states that for NERC Category B contingencies, all study region facilities with powers flows above the rated limits and TDFs (Transfer Distribution Factors) of greater than 5% were flagged as violations for both system intact conditions and under contingencies. The MISO criteria used to determine constraints refer to all thermal overloads with DF \geq 5% under system intact conditions, or DF \geq 20% under Category B contingency, an overload of a generator outlet or an overload caused by the outage of a generator outlet, or the MW impact due to the study generation is \geq 20% of the overloaded facility ratings.

For NERC category C contingencies, all study region facilities with powers flows 25% above the rated limits, or TDFs \geq 3%, or the MW impact \geq 20% of the overloaded facility applicable rating were flagged as potential constraints for further review.

The system impact analysis performed in this group study was a traditional FCITC calculation using a source consisting of all of the queued projects and a sink modeled as the whole of PJM. The full nameplate capacity of the PJM queue projects was modeled as the source in the SH cases and the rated deliverable capacity was modeled as the source in the SPK cases. The MUST runs used a 3% TDF cutoff.

2.4 Study Assumptions

This affected system impact study was conducted with all the PJM participating generators operating together as a group. Analysis was not performed on individual generating units or subsets of the generating units unless specifically noted otherwise. The results obtained in this analysis will change if any of the data or assumptions which were made during the development of the study models is revised.

3 Power Flow Analysis Results

3.1 Thermal Results by DC Analysis

3.1.1 2016 Results

No thermal violations attributed to the PJM interconnection requests were identified in MISO system under the 2016 SPK nor SH condition by the DC transfer analysis using the DF cutoff criterion.

3.1.2 2023 Results

No thermal violations attributed to the PJM interconnection requests were identified in MISO system under the 2023 SPK nor SH condition by the DC transfer analysis using the DF cutoff criterion.

3.2 Thermal Results by AC Analysis

As there was no FCITC binding contingency and thermal violation pairs identified in the study region by the DC analysis, no AC analysis was performed to verify the contingency/monitor pairs.

4 Conclusions

The linear transfer analysis (DC analysis) did not identify any steady state thermal violations with the interconnection of the thirty-four PJM projects on the monitored MISO transmission system using a 3% TDF cutoff criterion.

Appendix A Steady State Analysis Input Files

A.1 Subsystem File

Following subsystem definitions were used in the MUST linear transfer analysis.

```
/ For DPP August Cycle study
/ updated U3-021 and U2-072 on 7/8/2013
SUBSYSTEM 'STUDY_CENTRAL'
  AREA 333 / cwld
  AREA 356 / AMMO
  AREA 357 / AMIL
  AREA 217 / NIPS
  AREA 208 / DEM
  AREA 210 / SIGE
  AREA 216 / IPL
  AREA 360 / CWLP
  AREA 361 / SIPC
END
SUBSYSTEM 'STUDY_WEST'
  AREA 295 / WEC
  AREA 600 / XEL
  AREA 608 / MP
  AREA 613 / SMMPA
  AREA 615 / GRE
  AREA 620 / OTP
  AREA 627 / ALTW
  AREA 633 / MPW
  AREA 635 / MEC
      AREA 661
                  / mdu
  AREA 680 / DPC
  AREA 694 / ALTE
  AREA 696 / WPS
  AREA 697 / MGE
  AREA 698 / UPPC
END
Subsystem 'STUDY SEAMS'
   AREA 222 / CE
  AREA 330 / AECI
  AREA 640 / NPPD
  AREA 645 / OPPD
  AREA 650 / LES
  AREA 652 / WAPA
  AREA 540 / MIPU
  AREA 541 / KCPL
  AREA 542 / KACY
```

AREA 545 / INDN

end

```
Subsystem 'CENTRAL_SEAMS'
     AREA 333
                / CWLD
  AREA 356 / AMMO
  AREA 357 / AMIL
  AREA 222 / CE
  AREA 330 / AECI
  AREA 640 / NPPD
  AREA 645 / OPPD
  AREA 650 / LES
  AREA 652 / WAPA
end
SUBSYSTEM PJM_im
     AREAS 201 209
     AREAS 222 235
     scale ALL for import
END
subsystem
           s-073
     participate include offline
     bus 884501
                    160
     bus
           884502
                       40
      end
end
subsystem
          t-094
     participate include offline
     bus
           885601
                    1035
      end
end
subsystem
          t-099
     participate include offline
     bus
           885611
     bus
           885612
                       80
     end
end
subsystem t-130
     participate include offline
     bus
           885621
                       60
     bus
           885622
                       240
     end
end
subsystem
           t-131
     participate include offline
     bus
           885631
                       30
                       120
     bus
           885632
     end
end
subsystem
          t-142
     participate include offline
     bus 885641
                       60
```



```
bus
            885642
                        240
     end
end
subsystem
           t-143
     participate include offline
     bus
            885651
                        50
     bus
            885652
                        200
      end
end
subsystem
           t-148
     participate include offline
     bus
                        20
            885661
     bus
            885662
                        80
     end
end
           u1-049
subsystem
     participate include offline
     bus
            887601
                        13
                        87
     bus
            887602
     end
end
subsystem
           u2-028a
     participate include offline
     bus
            889001
                      135
     end
end
/* Withdrew 07/08/2013
subsystem
           u2-062
     participate include offline
     bus
            889031
                       12.2
     bus
            889032
                       81.8
     bus
                       12.2
            889041
     bus
            889042
                        81.8
     end
end
subsystem
           u2-072
     participate include offline
     bus
            889031
                        39
     bus
            889032
                        261
     end
end
subsystem
           u3-021
     participate include offline
                        50
     bus
            890511
                        50
     bus
            890501
     end
end
subsystem
           u4-027
     participate include offline
     bus
            891001
                        100
```



```
end
end
subsystem
            v1-011
      participate include offline
      bus
            892001
                        13
      bus
                        87
            892002
      end
end
subsystem
            v1-012
      participate include offline
      bus
            892011
                      19.5
                        130.5
      bus
            892012
      end
end
subsystem
            v2-006
      participate include offline
      bus
            893011
                       19.5
      bus
            893012
                        130.5
      end
end
subsystem
            v2-042a
      participate include offline
      bus
            893000
                     26
      bus
            893001
                        174
      end
end
subsystem
            v3-007
      participate include offline
      bus
            894501
                        26
      bus
            894502
                        174
      end
end
subsystem
            v3-008
      participate include offline
      bus
            894511
                        26
                        174
      bus
            894512
      end
end
subsystem
            v3-009
      participate include offline
      bus
            894521
                        26
      bus
            894522
                        174
      end
end
subsystem
           v3-053
      participate include offline
      bus
            894540
                     19.5
      bus
            894541
                        130.5
      end
end
subsystem
           v4-010
      participate include offline
```



```
bus
            900001
                        26
                        174
      bus
            900002
      end
end
subsystem
            v4-015
      participate include offline
      bus
            900011
                        8.6
     bus
            900012
                        58
      end
end
subsystem
            v4-016
      participate include offline
      bus
            900021
            900022
                        174
      bus
      end
end
           w1-070a-at4
subsystem
      participate include offline
      bus
            901001
                    6.5
      bus
            901002
                        43.5
      end
end
subsystem
           w1-072a_at5
      participate include offline
      bus
            901011
                        40
      end
end
subsystem
            w2-001
      participate include offline
      bus
            902141
                        8.6
      bus
            902142
                        58
      end
end
subsystem
           w3-059a_at6
      participate include offline
      bus
            903201
                    12.9
      bus
            903202
                        86.1
      end
end
subsystem
            w3-088
      participate include offline
      bus
            903211
                        26
                        174
      bus
            903212
      end
end
subsystem
            w3-128
      participate include offline
      bus
            903221
      end
end
subsystem w3-170
      participate include offline
```



```
bus
            903232
                        12
      end
end
subsystem
           x1-027a
     participate include offline
     bus
            907001
                       65
     bus
            907002
                        435
      end
end
subsystem
           y1-006
     participate include offline
                       9.36
     bus
           913001
     bus
            913002
                        62.64
     end
end
           y1-069
subsystem
     participate include offline
                       799
     bus
            913011
      end
subsystem ICQ_Total_SH
     participate include offline
      subsystem s-073
      subsystem
                 t-094
                              1035
      subsystem t-099
                              100
      subsystem
                 t-130
                              300
      subsystem t-131
                              150
                              300
     subsystem t-142
     subsystem
                 t-143
                              250
     subsystem
                 t-148
                              100
     subsystem
                 u1-049
                              100
      subsystem
                 u2-028a
                              135
      subsystem
                 u2-072
                              300
                 u3-021
                              100
      subsystem
                              100
     subsystem
                 u4-027
                              100
     subsystem
                 v1-011
      subsystem
                 v1-012
                              150
     subsystem
                 v2-006
                              150
      subsystem
                 v2-042a
                              200
      subsystem
                 v3-007
                              200
      subsystem
                 v3-008
                              200
     subsystem
                 v3-009
                              200
     subsystem
                              150
                 v3 - 053
      subsystem
                 v4-010
                              200
      subsystem
                 v4-015
                              66.6
      subsystem
                 v4-016
                              200
      subsystem
                 w1-070a-at4 50
      subsystem
                 w1-072a_at5 40
                 w2-001
                              66.6
      subsystem
                 w3-059a_at6 99
      subsystem
      subsystem
                 w3-088
                            200
      subsystem
                 w3-128
                              652
```



```
subsystem
                 w3-170
                             12
      subsystem
                             500
                 x1-027a
      subsystem
                 y1-006
                             72
      subsystem
                 y1-069
                            799
      end
end
/subsystems for on peak studies
subsystem
           s-073_op
     participate include offline
     bus
           884502
                       40
      end
end
subsystem
           t-094_op
     participate include offline
     bus
            885601
                       1035
     end
end
subsystem
           t-099_op
     participate include offline
     bus
           885611
                       20
     end
end
subsystem
          t-130_op
     participate include offline
     bus
           885621
     end
end
subsystem
           t-131_op
     participate include offline
     bus
           885631
                       30
     end
end
subsystem
           t-142_op
     participate include offline
     bus
           885641
                       60
     end
end
subsystem
           t-143_op
     participate include offline
     bus
           885651
                       50
     end
end
subsystem
          t-148_op
     participate include offline
     bus
           885661
                       20
     end
end
          u1-049_op
subsystem
     participate include offline
     bus 887601
                       13
```



```
end
end
subsystem
           u2-028a_op
     participate include offline
     bus
           889001
                    135
     end
end
subsystem
          u2-072_op
     participate include offline
     bus
           889031
      end
end
subsystem
           u3-021_op
     participate include offline
           890511
     bus
                       50
     bus
           890501
                        50
     end
end
subsystem
           u4-027_op
     participate include offline
           891001
     bus
     end
end
subsystem
           v1-011_op
     participate include offline
     bus
           892001
                       13
     end
end
subsystem
          v1-012_op
     participate include offline
     bus
           892011
                       19.5
     end
end
subsystem
          v2-006_op
     participate include offline
     bus
           893011
                    19.5
     end
end
subsystem
           v2-042a_op
     participate include offline
     bus
           893000
     end
end
subsystem
           v3-007_op
     participate include offline
     bus
                        26
           894501
     end
end
subsystem
           v3-008_op
     participate include offline
     bus
           894511
     end
```



```
end
           v3-009_op
subsystem
     participate include offline
     bus
           894521
                       2.6
     end
end
subsystem
           v3-053_op
     participate include offline
           894540
     bus
                      19.5
     end
end
subsystem
           v4-010_op
     participate include offline
           900001
     bus
                       26
     end
end
subsystem
          v4-015_op
     participate include offline
                    8.6
     bus
           900011
     end
end
subsystem
           v4-016_op
     participate include offline
     bus
           900021
     end
end
subsystem
          w1-070a-at4_op
     participate include offline
     bus
           901001
                    6.5
     end
end
subsystem
          w1-072a_at5_op
     participate include offline
     bus
           901011
     end
end
subsystem
           w2-001_op
     participate include offline
           902141
     bus
                       8.6
     end
end
subsystem
           w3-059a_at6_op
     participate include offline
     bus
            903201
                      12.9
     end
end
subsystem
           w3-088_op
     participate include offline
           903211
     bus
     end
end
subsystem w3-128_op
```



```
participate include offline
            903221
     bus
                        652
      end
end
subsystem
           w3-170_op
     participate include offline
            903232
     bus
      end
end
subsystem
           x1-027a_op
     participate include offline
     bus
            907001
                        65
      end
end
           y1-006_op
subsystem
     participate include offline
            913001
                        9.36
     bus
      end
end
subsystem
           y1-069_op
     participate include offline
     bus
           913011
                       799
      end
end
subsystem ICQ_Total_SPK
     participate include offline
      subsystem s-073_op
     subsystem t-094_op
                              1035
     subsystem t-099_op
                              20
     subsystem
                 t-130_op
                              60
     subsystem
                 t-131_op
                              30
     subsystem
                 t-142_op
                              60
      subsystem
                 t-143 op
                              50
                              20
      subsystem
                  t-148_op
     subsystem
                 u1-049_op
                              13
                 u2-028a_op 135
     subsystem
      subsystem
                 u2-072_op
                              39
     subsystem
                 u3-021_op
                              100
                 u4-027_op
      subsystem
                              100
      subsystem
                 v1-011_op
                              13
      subsystem
                 v1-012_op
                              19.5
     subsystem
                 v2-006_op
                              19.5
     subsystem
                 v2-042a_op 26
                 v3-007_op
      subsystem
                              26
      subsystem
                 v3-008_op
                              26
      subsystem
                 v3-009_op
                              26
      subsystem
                  v3-053_op
                              19.5
      subsystem
                  v4-010_op
                              26
      subsystem
                 v4-015_op
                              8.6
      subsystem
                  v4-016_op
                              26
      subsystem
                  w1-070a-at4_op
                                    6.5
      subsystem
                 w1-072a_at5_op
                                    40
```



```
subsystem
                w2-001_op
                            8.6
                                  12.9
     subsystem
                w3-059a_at6_op
                qo_880-Ew
     subsystem
                            26
     subsystem
                w3-128_op
                            652
     subsystem
                w3-170_op
                            12
     subsystem
                x1-027a op 65
     subsystem
                y1-006_op
                            9.36
     subsystem
                y1-069_op
                            799
     end
end
END
```

A.2 Monitored Element File

Following monitored element definitions were used in the MUST linear transfer analysis.

```
monitor branches in subsystem 'STUDY_CENTRAL' in kvrange 60 800
              from subsystem 'STUDY CENTRAL' in kvrange 60 800
monitor ties
com ======ATC 69kV above=======
monitor branches in area 295 in kyrange 60 800
monitor ties
              from area 295 in kvrange 60 800
monitor branches in area 694 in kvrange 60 800
monitor ties
              from area 694 in kvrange 60 800
monitor branches in area 696 in kvrange 60 800
monitor ties
              from area 696 in kvrange 60 800
monitor branches in area 697 in kvrange 60 800
              from area 697 in kvrange 60 800
monitor ties
monitor branches in area 698 in kvrange 60 800
monitor ties
              from area 698 in kvrange 60 800
monitor branches in area 600 in kvrange 60 800
monitor ties
              from area 600 in kvrange 60 800
monitor branches in area 608 in kvrange 60 800
monitor ties
              from area 608 in kvrange 60 800
monitor branches in area 613 in kvrange 60 800
monitor ties
              from area 613 in kvrange 60 800
monitor branches in area 615 in kvrange 60 800
              from area 615 in kvrange 60 800
monitor branches in area 620 in kyrange 40 800
monitor ties
              from area 620 in kvrange 40 800
monitor branches in area 627 in kvrange 60 800
              from area 627 in kvrange 60 800
monitor ties
monitor branches in area 633 in kvrange 60 800
monitor ties from area 633 in kvrange 60 800
```



```
monitor branches in area 635 in kvrange 60 800
monitor ties from area 635 in kvrange 60 800
monitor branches in area 661 in kvrange 57 800
monitor ties from area 661 in kvrange 57 800
monitor branches in area 667 in kvrange 60 800
monitor ties from area 667 in kvrange 60 800
monitor branches in area 680 in kvrange 60 800
monitor ties from area 680 in kvrange 60 800
com subsystem seams
monitor branches in subsystem 'STUDY_SEAMS' in kvrange 60 800
monitor ties from subsystem 'STUDY_SEAMS' in kvrange 60 800
```

A.3 Contingency Files

The following three master contingency files were supplied by MISO and applied to the 2016 SPK and SH conditions without any modification.

• 2015-DPP_Aug-Cycle_Master-B_Central_rev0.con

```
SINGLE BRANCH IN SUBSYSTEM 'STUDY CENTRAL'
SINGLE UNIT OUTAGE IN SUBSYSTEM 'STUDY_CENTRAL'
SINGLE BRANCH IN SUBSYSTEM 'STUDY_SEAMS'
SINGLE TIE FROM SUBSYSTEM 'CENTRAL_SEAMS'
SINGLE UNIT OUTAGE IN SUBSYSTEM 'STUDY SEAMS'
include '.\2015\2015-CatB\BREC_2014S_Cat-B_06122012_Explicit.con'
include '.\2015\2015-CatB\DEI_2014S_CatB_06122012_Explicit.con'
INCLUDE '.\2015\2015-CatB\HE_2014S_Cat-B_06122012_Explicit.con'
INCLUDE '.\2015\2015-CatB\IPL_2014_Cat-B_06122012_Explicit.con'
INCLUDE '.\2015\2015-CatB\SIGE_2014_Cat-B_06122012.con'
INCLUDE '.\2015\2015-CatB\NIPS_2015_CatB.con'
INCLUDE '.\2015\2015-CatB\B_explicit_AMRN_2015.con'
INCLUDE '.\2015\2015-CatB\B_explicit_AMRN_2017S_fixed.con'
INCLUDE '.\2015\2015-CatB\B_Explicit_SIPC_2017_MISO.con'
INCLUDE '.\2015\2015-CatB\CWLP MTEP12 CatB.con'
INCLUDE '.\PJM\21S_RFC-PJM_Study_Cat-B1-B2-B3_R1.con'
INCLUDE '.\PJM\ComEd_RTEP_Cat_B.con'
```

• 2015-DPP_Aug-Cycle_Master-B_West_rev0.con

```
SINGLE BRANCH IN SUBSYSTEM 'STUDY_WEST'
SINGLE TIE FROM SUBSYSTEM 'STUDY_WEST'
SINGLE UNIT OUTAGE IN SUBSYSTEM 'STUDY_WEST'
INCLUDE '.\2015\2015west\2015_ATC_DPP_August_2012_B1_fixed.con'
INCLUDE '.\2015\2015west\2015_ATC_DPP_August_2012_B2_B3_fixed.con'
include '.\2015\2015west\GRE_CONS_B.con'
include '.\2015\2015west\MDU-CON-CAT-B_fixed.con'
```



```
include '.\2015\2015west\MP_CONS_B.con'
include '.\2015\2015west\MRES_MTEP12_Cat-B_edits.con'
include '.\2015\2015west\MTEP12_2017_DPC_Cat_B.con'
include '.\2015\2015west\MTEP12_2017_ITCM_Cat_B_fixed.con'
include '.\2015\2015west\MTEP12_2017_MEC_Cat_B.con'
include '.\2015\2015west\MTEP12_2017_MPW_Cat_B.con'
include '.\2015\2015west\MTEP12_2017_Xcel_Cat_B_fixed.con'
include '.\2015\2015west\OTP_CONS_B_Updated.con'
include '.\2015\2015west\Selected_MDU_CONS_B.con'
include '.\2015\2015west\SMPA_CONS_B.con'
```

• 2015-DPP_Aug-Cycle_Master-C-Single_rev0.con

```
INCLUDE '.\2015\2015west\ATC MTEP12 2017 C1 C2 fixed.con'
INCLUDE '.\2015\2015west\ATC_MTEP12_2017_C5_fixed.con'
include '.\2015\2015west\ATC_MTEP12_2017_C9_fixed.con'
include '.\2015\2015west\ATC_MTEP12_auto_C3_for_cat_C1_C2_fixed.con'
include '.\2015\2015west\GRE_CONS_C_fixed.con'
include '.\2015\2015west\IS_2017_CAT_C_fixed.con'
include '.\2015\2015west\MDU_CONS_C1.con'
include '.\2015\2015west\MDU-CON-CAT-C_fixed.con'
include '.\2015\2015west\MP_CONS_C_fixed.con'
include '.\2015\2015west\MRES_CONS_C_Updated_fixed.con'
include '.\2015\2015west\MTEP12_2017_DPC_Cat_C.con'
include '.\2015\2015west\MTEP12_2017_ITCM_Cat_C_fixed.con'
include '.\2015\2015west\MTEP12_2017_MEC_Cat_C1_C2_C5_fixed.con'
include '.\2015\2015west\MTEP12 2017 MPW Cat C.con'
include '.\2015\2015west\MTEP12_2017_Xcel_Cat_C_fixed.con'
include '.\2015\2015west\OTP_CONS_C_fixed.con'
include '.\2015\2015west\Selected_WAPA_CONS_C_fixed.con'
include '.\2015\2015west\SMPA_CONS_C_fixed.con'
include '.\2015\2015-CatC\C1_Explicit_AMRN_2017.con'
include '.\2015\2015-CatC\C1_Explicit_CWLD_2017_MISO.con'
include '.\2015\2015-CatC\C1 Explicit SIPC 2017 MISO.con'
include '.\2015\2015-CatC\C2_Explicit_AMRN_2017_fixed.con'
include '.\2015\2015-CatC\C2_Explicit_CWLD_2017_MISO.con'
include '.\2015\2015-CatC\C2_Explicit_SIPC_2017_MISO.con'
include '.\2015\2015-CatC\C5_Explicit_AMRN_2017_fixed.con'
include '.\2015\2015-CatC\C5_Explicit_CWLD_2017_MISO_fixed.con'
include '.\2015\2015-CatC\CWLP_MTEP12_CatC1.con'
include '.\2015\2015-CatC\CWLP_MTEP12_CatC2.con'
include '.\2015\2015-CatC\CWLP_MTEP12_CatC5.con'
include '.\2015\2015-CatC\BREC_2014S_Cat-C12_06122012_Explicit.con'
include
                                       '.\2015\2015-CatC\BREC 2014S Cat-
C125_06122012_BusDoubleAuto.con'
include '.\2015\2015-CatC\DEI_2014S_CatC1_C2_06122012_Explicit.con'
include '.\2015\2015-CatC\DEI_2014S_CatC5_06122012_Explicit.conn'
include '.\2015\2015-CatC\HE_2014S_Cat-C_06122012_BusDouble-auto.con'
include '.\2015\2015-CatC\IPL_2014S_Cat-C125_06122012_Explicit.con'
include '.\2015\2015-CatC\NIPS_2015_CatC.con'
```



```
include'.\2015\2015-CatC\SIGE_2014S_Cat-
C125_06122012_BusDoubleAuto.con'
INCLUDE '.\PJM\21S_RFC-PJM_Study_Cat-C1-C2-C3-C5_R1.con'
INCLUDE '.\PJM\ComEd_RTEP_Cat_C.con'
```

The following three master contingency files were supplied by MISO and applied to the 2023 SPK and SH conditions without any modification.

• 2022-DPP_Aug-Cycle_Master-B_Central_rev0.con

```
SINGLE BRANCH IN SUBSYSTEM 'STUDY_CENTRAL'
SINGLE UNIT OUTAGE IN SUBSYSTEM 'STUDY_CENTRAL'
SINGLE BRANCH IN SUBSYSTEM 'STUDY_SEAMS'
SINGLE TIE FROM SUBSYSTEM 'CENTRAL SEAMS'
SINGLE UNIT OUTAGE IN SUBSYSTEM 'STUDY SEAMS'
INCLUDE '.\2022\2022-CatB\B explicit AMRN 2022.con'
INCLUDE '.\2022\2022-CatB\B_Explicit_SIPC_2022_MISO.con'
INCLUDE '.\2022\2022-CatB\CWLP_MTEP12_CatB.con'
INCLUDE '.\2022\2022-CatB\BREC_2022S_Cat-B_06122012_Explicit.con'
INCLUDE '.\2022\2022-CatB\DEI_2022S_CatB_06122012_Explicit.con'
INCLUDE '.\2022\2022-CatB\HE_2022S_Cat-B_06122012_Explicit.con'
INCLUDE '.\2022\2022-CatB\IPL 2022 Cat-B 06122012 Explicit.con'
INCLUDE '.\2022\2022-CatB\NIPS_2022_CatB.con'
INCLUDE '.\2022\2022-CatB\SIGE_2022S_Cat-B_06122012.con'
INCLUDE '.\PJM\21S_RFC-PJM_Study_Cat-B1-B2-B3_R1.con'
INCLUDE '.\PJM\ComEd_RTEP_Cat_B.con'
```

2022-DPP_Aug-Cycle_Master-B_West_rev0.con

```
SINGLE BRANCH IN SUBSYSTEM 'STUDY_WEST'
SINGLE TIE FROM SUBSYSTEM 'STUDY_WEST'
SINGLE UNIT OUTAGE IN SUBSYSTEM 'STUDY_WEST'
INCLUDE '.\2022\2022west\2022_ATC_DPP_August_2012_B1_fixed.con'
INCLUDE '.\2022\2022west\2022_ATC_DPP_August_2012_B2_B3_fixed.con'
include '.\2022\2022west\GRE_CONS_B.con'
include '.\2022\2022west\MDU-CON-CAT-B_fixed.con'
include '.\2022\2022west\MP_CONS_B.con'
include '.\2022\2022west\MRES_MTEP12_Cat-B_edits.con'
include '.\2022\2022west\MTEP12_2022_DPC_Cat_B.con'
include '.\2022\2022west\MTEP12_2022_ITCM_Cat_B_fixed.CON'
include '.\2022\2022west\MTEP12_2022_MEC_Cat_B.con'
include '.\2022\2022west\MTEP12 2022 MPW Cat B.con'
include '.\2022\2022west\MTEP12 2022 Xcel Cat B fixed.con'
include '.\2022\2022west\OTP_CONS_B_Updated.con'
include '.\2022\2022west\Selected_MDU_CONS_B.con'
include '.\2022\2022west\SMPA_CONS_B.con'
```

• 2022-DPP_Aug-Cycle_Master-C-Single_rev0.con

```
INCLUDE '.\2022\2022west\ATC_MTEP12_2022_C1_C2_fixed.con'
INCLUDE '.\2022\2022west\ATC_MTEP12_2022_C5_fixed.con'
```



```
include '.\2022\2022west\ATC_MTEP12_2022_C9_fixed.con'
include '.\2022\2022west\ATC_MTEP12_auto_C3_for_cat_C1_C2_fixed.con'
include '.\2022\2022west\GRE CONS C fixed.con'
include '.\2022\2022west\IS_2022_CAT_C_fixed.con'
include '.\2022\2022west\MDU CONS C1.con'
include '.\2022\2022west\MDU-CON-CAT-C fixed.con'
include '.\2022\2022west\MP_CONS_C_fixed.con'
include '.\2022\2022west\MRES_CONS_C_Updated.con'
include '.\2022\2022west\MTEP12_2022_DPC_Cat_C.con'
include '.\2022\2022west\MTEP12_2022_ITCM_Cat_C_fixed.CON'
include '.\2022\2022west\MTEP12_2022_MEC_Cat_C1_C2_C5_fixed.con'
include '.\2022\2022west\MTEP12_2022_MPW_Cat_C.con'
include '.\2022\2022west\MTEP12_2022_Xcel_Cat_C_fixed.con'
include '.\2022\2022west\OTP_CONS_C_fixed.con'
include '.\2022\2022west\Selected_WAPA_CONS_C_fixed.con'
include '.\2022\2022west\SMPA CONS C fixed.con'
include '.\2022\2022-CatC\C1_Explicit_AMRN_2022.con'
include '.\2022\2022-CatC\C1_Explicit_CWLD_2022_MISO.con'
include '.\2022\2022-CatC\C1_Explicit_SIPC_2022_MISO.con'
include '.\2022\2022-CatC\C2_Explicit_AMRN_2022_fixed.con'
include '.\2022\2022-CatC\C2_Explicit_CWLD_2022_MISO.con'
include '.\2022\2022-CatC\C2_Explicit_SIPC_2022_MISO.con'
include '.\2022\2022-CatC\C5 Explicit AMRN 2022 fixed.con'
include '.\2022\2022-CatC\C5_Explicit_CWLD_2022_MISO_fixed.con'
include '.\2022\2022-CatC\CWLP_MTEP12_CatC1.con'
include '.\2022\2022-CatC\CWLP_MTEP12_CatC2.con'
include '.\2022\2022-CatC\CWLP_MTEP12_CatC5.con'
include '.\2022\2022-CatC\SIPCautoCdub.con'
include '.\2022\2022-CatC\BREC_2022S_Cat-C12_06122012_Explicit.con'
                                       '.\2022\2022-CatC\BREC_2022S_Cat-
include
C125_06122012_BusDoubleAuto.con'
include '.\2022\2022-CatC\DEI 2022S CatC5 06122012 Explicit.con'
include '.\2022\2022-CatC\DEI 2022S CatC1 C2 06122012 Explicit.con'
include '.\2022\2022-CatC\HE_2022S_Cat-C_06122012_BusDoubleAuto.con'
include '.\2022\2022-CatC\IPL_2022S_Cat-C125_06122012_Explicit.con'
include '.\2022\2022-CatC\NIPS_2022_CatC.con'
include
                                       '.\2022\2022-CatC\SIGE_2022S_Cat-
C125_06122012_BusDoubleAuto.con'
INCLUDE '.\PJM\21S_RFC-PJM_Study_Cat-C1-C2-C3-C5_R1.con'
INCLUDE '.\PJM\ComEd_RTEP_Cat_C.con'
```