Loop Flow Study Phase II Joint and Common Market Initiative

Midwest ISO-PJM Joint Stakeholder Web Conference November 14, 2008

Review of Loop Flow Study Phase I

➤ Purpose:

- Increase the understanding of the impact that external market participants have on the creation of loop flows. Focused on Lake Erie circulation flow and PJM Southeast versus Southwest interface flows.
- Provide details on plans and actions to address the problems of external loop flow

Phase I Recommendations

> Recommendation

- ➤ Commissioning of the Michigan-Ontario PARs as soon as possible to mitigate the loop flows around Lake Erie.
 - PJM/NYISO and NYISO/IESO commit to review NY/PJM and St. Lawrence PAR operations to assess contributions to Lake Erie Loop Flow.
 - ➤ The four parties will develop a comprehensive plan on the operation of the Michigan-Ontario and NYISO/PJM PARS to control loop flows around Lake Erie,

➤ Status

- > Facilities Agreement has been signed by transmission owners.
- Midwest ISO and IESO are developing Standard Operating Procedures for the PARs.
- > PARS currently available to regulate during an emergency.

Phase I Recommendations, cont.

➤ Recommendation

➤ IESO and NYISO should adopt a Congestion Management Process whereby they report their market flows to the IDC and participate with Midwest ISO and PJM to manage circulation flows around Lake Erie when congestion occurs.

➤ Status

- ➤ IESO has stated they want to have the Michigan Ontario PARs Operational to determine if that will resolve loop flow on the interface before any further consideration of implementing a Congestion Management Process.
- > PJM and NYISO are having ongoing discussions about the possibility of implementing a Congestion Management Process.

Phase I Recommendations, cont.

> Recommendation

➤ Create an Energy Schedule Tag Archive that contains tag impacts, market transfer impacts, and generation-to-load impacts for flowgates in the IDC

>Status

➤ This recommendation is being addressed under the Parallel Flow Visualization/Mitigation for RCs in EI SAR.

Purpose of Loop Flow Study Phase II

➤ Purpose:

➤ Identify the source and magnitude of parallel flows on key flowgates that result from tags, market transfer & generation-to-load.

>Scope:

➤ Thirty-five flowgates were included that have a history of significant transmission congestion, significant market-to-market coordination, high number and/or duration of TLR implementation.

Identified Flowgate List

OVNER	FLOVGAT	CONSTRAINTNAME
PJM	20	Erie West-Erie South 345 kV line
PJM	23	Roseland-Cedar Grove F 230 kV I/o Roseland-Cedar Grove B
PJM	100	Kammer #200 765/500 kV xfmr I/o Belmont-Harrison 500
PJM	122	Wylie Ridge #7 tx I/o Wylie #5 tx (SPS in-service)
PJM	141	Elrama-Mitchell 138 kV I/o Sammis-Wylie Ridge 345 kV
MISO	291	Pierce B 345/138 kV transformer I/o Pierce-Foster 345 kV
PJM	310	Person-Halifax 230 kV line I/o Wake-Carson 500 kV
PJM	500	Pontiac-Wilton Center 345 kV I/o Pontiac-Dresden 345 kV (8014 line)
MISO	2086	Newtonville 138/161 Xfm T3 flo Newtonville 138/161 Xfm T5
MISO	2336	BentnHrbr-Palisades345/Cook-Palisades345
PJM	2352	PRNTY-MTSTM500/BLACKO-BEDNGT500
PJM	2353	BLACKO-BEDNGT500-PRNTY-MTSTM500
PJM	2377	Darwin-Eugene 345 kV I/o Jefferson-Rockport 765 kV
MISO	2517	Northeast Ohio Interface
MISO	2519	Ohio Eastern Interface
MISO	2470	Ashtabula-Erie West 345 (flo) Sammis-Wylie Ridge 345
MISO	2980	Dune Acres-Michigan City 138 1&2 (flo) Wilton Center-Dumont 765
MISO	3006	EAU CLAIRE-ARPIN 345 KV
MISO	3012	Paddock 345/138 Xfm (flo) Wempletown-Rockdale 345
MISO	3145	PANA XFMR + COFFEEN-COFFEEN NORTH
MISO	3167	St. Francois - Lutesville 345k
PJM	3250	155 Nelson-111 Electric Junction (15502) 345 kV I/o Cherry Valley-Silver Lake (15616) 345 kV
MISO	3270	State Line-Wolf Lake 138 flo Burnham-Sheffield 345
MISO	3352	Lanesville Xfmr 345/138kV (flo) Kinc-Lath-Pont & Kinc-Pawnee
MISO	3529*	N. Appleton-Werner W. 345
MISO	3532	Ellington-Hintz 138 for N.Appleton-Werner West 345
MISO	3706	Arnold - Hazleton
MISO	6004	MWSI (Minnesota Wisconsin Stability Interface)
MISO	6007	GENTLMN3 345 REDVILO3 345 1
MISO	6126	S1226-Tekamah 161kV flo S3451-Raun 345kV
MISO	6164	Plymouth-Sioux City 161kV flo Raun-Sioux City 345kV
MISO	6168	Hills-Parnell 161kV flo Hills-Montezuma 345kV
ONT	7102"	QFW-(Queenston Flow West)
MISO	9159	ONT-ITC
MISO	14551	Alma-Elk Mound 161 FLO King-Eau Claire-Arpin 345

^{*} no real-time data available for analysis

Flowgate Analysis Methodologies

➤ Analysis Tools and Data

- Transmission Adequacy and Reliability Assessment (TARA)
- > PJM's EMS state estimator outputs

➤ Method I: Contract Path Flow

- ➤ Gen-to-load impact for each entity
- > Tagged impacts only include PJM historical data
- > Tagged impacts are assigned to the exporting entity

➤ Method II: Actual Energy Flow

- ➤ Gen-to-load impact for each entity
- Generation transfer impact based on observed energy exchanges between two entities

Analysis Results

- ➤ Analysis Results by Region
 - > This presentation has a few example flowgates
 - > Results for all 35 flowgates results are in a separate presentation

Region	Flowgate ID	Flowgate Name
Northeast	23 *	Roseland-Cedar Grove F 230 kV I/o Roseland-Cedar Grove B
Normeast	9159	ONT-ITC
PJM/Midwest ISO Central Seam	100 *	Kammer #200 765/500 kV xfmr I/o Belmont-Harrison 500
Southeast	310 *	Person-Halifax 230 kV line I/o Wake-Carson 500 kV

^{*} See Appendix for Analysis Results

Flowgate 9159 ONT-ITC

- ➤ Flowgate 9159 is the interface between the IESO and the Midwest ISO
- ➤ Summary of results at 15:00 on 8/20/2007
 - ➤ Generation-to-load impacts of NYISO, IESO, and Midwest ISO are counter-clockwise around Lake Erie
 - PJM generation-to-load impact is clockwise around Lake Erie
 - ➤ Contracts from PJM to Midwest ISO have a counterclockwise impact of 300 MW
 - ➤ Contract from PJM to NYISO have a clockwise impact of 123 MW

Method I - Based on Contract Path

^{*} Due to insuffcient data, this value is calculated based on inputs to the simulation. The type of impact also can not be determined.

^{***} The Market Transfer Impact is only calculated for PJM and Midwest ISO (MISO)

^{**} Only the Contracts between PJM and other entities are known

Method II - Based on Actual Energy Flows

Phase II Conclusions

- Full analysis of the causes of flowgate impacts are limited by lack of consistent data.
 - Scheduling Impacts, Transfer Distribution Factors (TDF) are not observable since data is not saved in the Interchange Distribution Calculator (IDC).
 - ➤ Generation-to-Load impacts are only calculated by Midwest ISO, PJM, and SPP with external area impacts remaining largely unknown.
- ➤ Analysis of the causes of flowgate impacts using TARA
 - Create Transfer Distribution Factors (TDF)
 - Calculate generation-to-load impacts for entities other than Midwest ISO & PJM.

Phase II Conclusions (continued)

Calculations using the simulation tool (TARA) and PJM's EMS state estimator data show that a significant amount of flow on many Midwest ISO and PJM flowgates are from other entities.

Recommendations

- ➤ Midwest ISO, PJM and all of their neighbors need to increase the transparency of their systems to clarify Loop Flow impacts:
 - ➤ Market and Non-Market areas alike need to calculate and share the generation-to-load impacts on regional flowgates.
 - ➤ IDC Schedules, TDFs and Market Flows need to be archived for historical data mining.

Loop Flow Study Phase I and II Wrap Up

- Recommendations are consistent from both Phase I and Phase II efforts
- ➤ Tracking of recommendation implementation will be provided under current Midwest ISO and PJM Stakeholder process.

Appendix

Analysis Results by Region

≻Northeast Region

20	Erie West-Erie South 345 kV line	
23	Roseland-Cedar Grove F 230 kV I/o Roseland-Cedar Grove B	
9159	ONT-ITC	
7102	QFW-(Queenston Flow West)	

These flowgates are impacted by Lake Erie loop flows

Flowgate23 Roseland-Cedar Grove F I/o Roseland-Cedar Grove B

- Flowgate 23 is currently the most frequently congested flowgate near the border between NYISO and PJM
- Comparison of Method I and Method II Analysis
 - Method I: Shows the majority of flows on flowgate 23 are caused by PJM's market
 - > PJM exports to NYISO make up approximately half of PJM's impact on flowgate 23
 - ➤ PJM generation serving load in Public Service North make up the other half of PJM's impact on flowgate 23
 - ➤ NYISO generation to load makes up about 1/3 of the total impact observed on flowgate 23
 - ➤ Method II: Both PJM and NYISO have a large impact on flowgate 23
 - > PJM and NYISO flow impacts are about equal on flowgate 23
 - ➤ Unknown flows make up the remaining 1/3 of the flows observed on flowgate 23

Method I - Based on Contract Path

^{*} Due to insuffcient data, this value is calculated based on inputs to the simulation. The type of impact also can not be determined.

^{***} The Market Transfer Impact is only calculated for PJM and Midwest ISO (MISO)

^{**} Only the Contracts between PJM and other entities are known

Method II - Based on Actual Energy Flows
Towgate23 Roseland-Cedar Grove F 230 kV I/o Roseland-Cedar Grove B on 12/05/07

Analysis Results by Region

>PJM/Midwest ISO Central Seam

100	Kammer #200 765/500 kV xfmr I/o Belmont-Harrison 500
122	Wylie Ridge #7 tx I/o Wylie #5 tx (SPS in-service)
141	Elrama-Mitchell 138 kV I/o Sammis-Wylie Ridge 345 kV
2470	Ashtabula-Erie West 345 (flo) Sammis-Wylie Ridge 345
3270	State Line-Wolf Lake 138 flo Burnham-Sheffield 345
2352	PRNTY-MTSTM500/BLACKO-BEDNGT500
2353	BLACKO-BEDNGT500-PRNTY-MTSTM500
2517	Northeast Ohio Interface
2519	Ohio Eastern Interface

➤ The Kammer flowgate was selected because it is in the middle of the Midwest ISO/PJM RTO seam and is a reciprocal flowgate

Flowgate 100 Kammer #200 765/500kV xfmr I/o Belmont-Harrison 500

- ➤ The Kammer flowgate shows the impacts from many entities other than the Midwest ISO and PJM
- >Summary of results at 06:00 on 12/05/2007
 - ➤ Major flowgate impact is from PJM's market flows
 - ComEd to APS, MIDATL, and DOM
 - ➤ Generation to load impacts from the Midwest ISO zones have a reverse flow impact of 100 MW
 - Schedules from OVEC to PJM have a positive flow impact of 157 MW
 - Schedules from TVA to PJM have a positive flow impact of 41 MW

Method I - Based on Contract Path

^{*} Due to insuffcient data, this value is calculated based on inputs to the simulation. The type of impact also can not be determined.

^{***} The Market Transfer Impact is only calculated for PJM and Midwest ISO (MISO)

^{**} Only the Contracts between PJM and other entities are known

Method II - Based on Actual Energy Flows

flowgate100 Kammer #200 765/500 kV xfmr I/o Belmont-Harrison 500 on 12/05/07

Analysis Results by Region

>Southeast Region

310 Person-Halifax 230 kV line I/o Wake-Carson 500 kV

- ➤ The Person-Halifax flowgate is on the PJM/Progress Energy interface
 - Negatively impacted by large volumes of loop flows
 - ➤ TLRs unsuccessful in effectively managing loop flows in late August and early December of 2007

Flowgate310 Person-Halifax 230kV line I/o Wake-Carson 500 kV

➤ Summary of results at 12:30 on 08/20/2007

- >Actual tie flows were from north to south
 - Schedules from PJM to southern entities were about 4,000 MW
 - Created 400 MW of north-to-south flow impact on this flowgate
 - PJM generation-to-load is north-to-south due to Clover generation location relative to this flowgate
 - PJM market transfer impact is south-to-north as a result of ComEd and AEP generation looping through CPLE
 - ➤ Duke generation-to-load impacts flowgate 310 in a north-tosouth direction by about 100 MW
 - ➤ CPLE generation-to-load impacts flowgate 310 in a south-tonorth direction by about 200 MW

CPLE CPLE

MEC MEC

PJM

DUKE

IESO

- PostFlow

SOUTHQ & SC & CPLW

LGEE & EKPC & OVEC

MISO

TVA

NYISO

unknow

■ NEPEX

SPP & ENTRGY

(3)

Method I - Based on Contract Path

^{*} Due to insuffcient data, this value is calculated based on inputs to the simulation. The type of impact also can not be determined.

^{***} The Market Transfer Impact is only calculated for PJM and Midwest ISO (MISO)

^{**} Only the Contracts between PJM and other entities are known

Flowgate310 Person-Halifax 230kV line I/o Wake-Carson 500 kV

➤ Summary of results at 16:30 on 12/05/2007

- >Actual tie flows were from south to north
 - Schedules into PJM from southern entities was about 3,000 MW
 - Created 350 MW of south-to-north flow impact on this flowgate
 - PJM generation-to-load is north-to-south due to Clover generation location relative to this flowgate
 - PJM market transfer impact is south-to-north as a result of ComEd and AEP generation looping through CPLE
 - ➤ Duke generation-to-load impacts flowgate 310 in a north-tosouth direction by about 60 MW
 - ➤ CPLE generation-to-load impacts flowgate 310 in a south-tonorth direction by about 120 MW

Method I - Based on Contract Path

^{*} Due to insuffcient data, this value is calculated based on inputs to the simulation. The type of impact also can not be determined.

^{***} The Market Transfer Impact is only calculated for PJM and Midwest ISO (MISO)

^{**} Only the Contracts between PJM and other entities are known

